New strategy to select underperformance on BeatLeader songs.
This commit is contained in:
parent
9c48760f42
commit
41090ca480
@ -32,3 +32,15 @@ from helpers.BeatSaverAPI import BeatSaverAPI
|
||||
beatsaver_api = BeatSaverAPI()
|
||||
map_data = beatsaver_api.get_maps(year=2024, month=9)
|
||||
```
|
||||
|
||||
## SimpleBeatLeaderAPI
|
||||
|
||||
```python
|
||||
from helpers.SimpleBeatLeaderAPI import SimpleBeatLeaderAPI
|
||||
player_id = "76561199407393962"
|
||||
beatleader_api = SimpleBeatLeaderAPI()
|
||||
data = beatleader_api.get_player_accgraph(player_id)
|
||||
data[0]
|
||||
filtered_data = [{'acc': item['acc'], 'stars': item['stars'], 'hash': item['hash']} for item in data]
|
||||
filtered_data[0]
|
||||
```
|
||||
|
@ -177,3 +177,45 @@ class SimpleBeatLeaderAPI:
|
||||
except requests.exceptions.RequestException as e:
|
||||
logging.error(f"Error fetching leaderboard for hash {hash}, diff {diff}, mode {mode}: {e}")
|
||||
return None
|
||||
|
||||
def get_player_accgraph(self, player_id, use_cache=True, context="general", include_unranked=False, type="acc"):
|
||||
"""
|
||||
Retrieve graph data for a specific player.
|
||||
|
||||
:param player_id: ID of the player
|
||||
:param use_cache: Whether to use cached data if available (default: True)
|
||||
:param context: Leaderboard context, eg. nopause, nomods, golf, scpm (default: "general")
|
||||
:param include_unranked: Whether to include unranked maps (default: False)
|
||||
:param type: Type of graph data to retrieve: 'acc', 'graph', or 'rank' (default: "acc")
|
||||
:return: List containing graph data points
|
||||
"""
|
||||
cache_file = os.path.join(self.CACHE_DIR, f"player_{player_id}_{type}graph_{context}.json")
|
||||
|
||||
if use_cache and self._is_cache_valid(cache_file):
|
||||
logging.debug(f"Using cached {type} graph data for player {player_id}")
|
||||
with open(cache_file, 'r') as f:
|
||||
return json.load(f)
|
||||
|
||||
logging.debug(f"Fetching fresh {type} graph data for player {player_id}")
|
||||
url = f"{self.BASE_URL}/player/{player_id}/accgraph"
|
||||
|
||||
params = {
|
||||
"leaderboardContext": context,
|
||||
"type": type,
|
||||
"no_unranked_stars": not include_unranked
|
||||
}
|
||||
|
||||
try:
|
||||
response = self.session.get(url, params=params)
|
||||
response.raise_for_status()
|
||||
graph_data = response.json()
|
||||
|
||||
# Cache the results
|
||||
with open(cache_file, 'w') as f:
|
||||
json.dump(graph_data, f)
|
||||
|
||||
sleep(1)
|
||||
return graph_data
|
||||
except requests.exceptions.RequestException as e:
|
||||
logging.error(f"Error fetching acc graph for player {player_id}: {e}")
|
||||
return None
|
@ -1,14 +1,15 @@
|
||||
from collections import defaultdict
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from helpers.BeatSaverAPI import BeatSaverAPI
|
||||
from helpers.SimpleBeatLeaderAPI import SimpleBeatLeaderAPI
|
||||
from statistics import mean
|
||||
from statistics import mean, median
|
||||
from typing import Dict, Any, List
|
||||
import argparse
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
|
||||
import math
|
||||
from dotenv import load_dotenv
|
||||
load_dotenv()
|
||||
LOG_LEVEL = os.environ.get('LOG_LEVEL', 'INFO').upper()
|
||||
@ -39,7 +40,7 @@ def load_history() -> Dict[str, Any]:
|
||||
history = json.load(f)
|
||||
history.setdefault('playlist_counts', {})
|
||||
return history
|
||||
return {'highest_accuracy': {}, 'playlist_counts': {}}
|
||||
return {'scoresaver': {}, 'playlist_counts': {}}
|
||||
|
||||
def save_history(history: Dict[str, Any]) -> None:
|
||||
"""
|
||||
@ -114,6 +115,139 @@ def infer_beatleader_leaderboard_id(song_id: str, difficulty: str) -> str:
|
||||
return f"{song_id}{difficulty_map[difficulty]}1"
|
||||
"""
|
||||
|
||||
|
||||
def playlist_strategy_beatleader_accuracy_gaps(
|
||||
api: SimpleBeatLeaderAPI,
|
||||
song_count: int = 40,
|
||||
bin_size: float = 0.25,
|
||||
bin_sort: bool = False
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Build a playlist of songs where the player's accuracy is furthest below the median accuracy
|
||||
for their star rating range. Songs are grouped into bins by star rating to ensure fair comparison.
|
||||
|
||||
:param api: SimpleBeatLeaderAPI instance for making API calls
|
||||
:param song_count: Number of songs to include in the playlist
|
||||
:param bin_size: Size of star rating bins for grouping similar difficulty songs
|
||||
:param bin_sort: Whether to sort the bins by star rating
|
||||
:return: A tuple containing (list of song dictionaries, playlist title string)
|
||||
"""
|
||||
player_id = prompt_for_player_id()
|
||||
history = load_history()
|
||||
history.setdefault('beatleader_accgraph_diff', {})
|
||||
history.setdefault('playlist_counts', {})
|
||||
|
||||
# Get the current count and increment it
|
||||
count_key = 'beatleader_accgraph_diff'
|
||||
current_count = history['playlist_counts'].get(count_key, 0)
|
||||
new_count = current_count + 1
|
||||
history['playlist_counts'][count_key] = new_count
|
||||
|
||||
# Fetch accuracy graph data
|
||||
all_scores = api.get_player_accgraph(player_id)
|
||||
if not all_scores:
|
||||
logging.warning(f"No accgraph data found for player ID {player_id} on BeatLeader.")
|
||||
return [], ""
|
||||
logging.debug(f"Found {len(all_scores)} accgraph entries for player ID {player_id} on BeatLeader.")
|
||||
|
||||
# Collect all star ratings
|
||||
star_ratings = [entry['stars'] for entry in all_scores if entry.get('stars') is not None]
|
||||
if not star_ratings:
|
||||
logging.warning("No star ratings found in accgraph data.")
|
||||
return [], ""
|
||||
min_stars = min(star_ratings)
|
||||
max_stars = max(star_ratings)
|
||||
star_range = max_stars - min_stars
|
||||
|
||||
# Remove the bin size calculation logic
|
||||
num_bins = math.ceil(star_range / bin_size)
|
||||
logging.info(f"Using bin size: {bin_size}, resulting in {num_bins} bins.")
|
||||
|
||||
# Group accuracies by bins
|
||||
bin_to_accuracies = defaultdict(list)
|
||||
for entry in all_scores:
|
||||
stars = entry.get('stars')
|
||||
acc = entry.get('acc')
|
||||
if stars is not None and acc is not None:
|
||||
bin_index = int((stars - min_stars) / bin_size)
|
||||
bin_to_accuracies[bin_index].append(acc)
|
||||
|
||||
# Calculate median accuracy for each bin
|
||||
bin_to_median = {}
|
||||
for bin_index, accs in bin_to_accuracies.items():
|
||||
bin_to_median[bin_index] = median(accs)
|
||||
bin_start = min_stars + bin_index * bin_size
|
||||
bin_end = bin_start + bin_size
|
||||
logging.debug(f"Median accuracy for bin {bin_index} (stars {bin_start:.2f} to {bin_end:.2f}): {bin_to_median[bin_index]:.4f}")
|
||||
|
||||
# Compute difference from median for each score
|
||||
for entry in all_scores:
|
||||
stars = entry.get('stars')
|
||||
acc = entry.get('acc')
|
||||
if stars is not None and acc is not None:
|
||||
bin_index = int((stars - min_stars) / bin_size)
|
||||
median_acc = bin_to_median.get(bin_index)
|
||||
if median_acc is not None:
|
||||
entry['diff_from_median'] = acc - median_acc
|
||||
else:
|
||||
entry['diff_from_median'] = float('inf') # Place entries with missing data at the end
|
||||
else:
|
||||
entry['diff_from_median'] = float('inf') # Place entries with missing data at the end
|
||||
|
||||
# Sort scores by difference from median (ascending: most below median first)
|
||||
all_scores.sort(key=lambda x: x.get('diff_from_median', float('inf')))
|
||||
|
||||
playlist_data = []
|
||||
for score_entry in all_scores:
|
||||
if len(playlist_data) >= song_count:
|
||||
break
|
||||
|
||||
acc = score_entry.get('acc', 0)
|
||||
stars = score_entry.get('stars')
|
||||
song_hash = score_entry.get('hash')
|
||||
|
||||
if not song_hash or stars is None:
|
||||
logging.debug(f"Skipping entry due to missing hash or stars: {score_entry}")
|
||||
continue
|
||||
|
||||
# Use stars as a proxy for difficulty; adjust if you have actual difficulty levels
|
||||
difficulty = f"Stars_{stars:.2f}"
|
||||
|
||||
# Avoid reusing the same song+difficulty
|
||||
if song_hash in history['beatleader_accgraph_diff'] and difficulty in history['beatleader_accgraph_diff'][song_hash]:
|
||||
logging.debug(f"Skipping song {song_hash} with difficulty {difficulty} as it's in history.")
|
||||
continue
|
||||
|
||||
song_dict = {
|
||||
'hash': song_hash,
|
||||
'difficulties': [
|
||||
{
|
||||
'name': difficulty,
|
||||
'characteristic': 'Standard' # Adjust if different characteristics are needed
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
playlist_data.append(song_dict)
|
||||
logging.debug(f"Selected song for playlist: Hash={song_hash}, Difficulty={difficulty}, "
|
||||
f"Accuracy={acc*100:.2f}%, Diff from Median={score_entry['diff_from_median']*100:.2f}%")
|
||||
|
||||
# Update history
|
||||
history['beatleader_accgraph_diff'].setdefault(song_hash, []).append(difficulty)
|
||||
|
||||
if not playlist_data:
|
||||
logging.info("No new songs found to add to the playlist based on history for BeatLeader accgraph difference.")
|
||||
else:
|
||||
for song in playlist_data:
|
||||
song_hash = song['hash']
|
||||
difficulty = song['difficulties'][0]['name']
|
||||
logging.info(f"Song added: Hash={song_hash}, Difficulty={difficulty}")
|
||||
logging.info(f"Total songs added to playlist from BeatLeader accgraph difference: {len(playlist_data)}")
|
||||
|
||||
save_history(history)
|
||||
|
||||
return playlist_data, f"beatleader_accgraph_diff-{new_count:02d}"
|
||||
|
||||
def playlist_strategy_scoresaber_oldscores(
|
||||
api: ScoreSaberAPI,
|
||||
song_count: int = 20
|
||||
@ -548,7 +682,7 @@ def map_leaders_by_month(month: int = 9, year: int = 2024, game_modes: List[str]
|
||||
logging.info(f"Collected leaderboards for {len(collected_data)} map+difficulty combinations, orderable by average accuracy of top ten plays for {month}/{year}.")
|
||||
return collected_data
|
||||
|
||||
def playlist_strategy_highest_accuracy(
|
||||
def playlist_strategy_scoresaver_acc(
|
||||
song_count: int = 40
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
@ -560,7 +694,7 @@ def playlist_strategy_highest_accuracy(
|
||||
:return: A list of dictionaries containing song information for the playlist.
|
||||
"""
|
||||
history = load_history()
|
||||
history.setdefault('highest_accuracy', {})
|
||||
history.setdefault('scoresaver', {})
|
||||
history.setdefault('playlist_counts', {})
|
||||
|
||||
# Get last month's date
|
||||
@ -585,7 +719,7 @@ def playlist_strategy_highest_accuracy(
|
||||
print("Invalid input. Please enter numbers only.")
|
||||
|
||||
# Get the current count for highest accuracy and increment it
|
||||
count_key = f"highest_accuracy-{year}-{month:02d}"
|
||||
count_key = f"scoresaver-{year}-{month:02d}"
|
||||
current_count = history['playlist_counts'].get(count_key, 0)
|
||||
new_count = current_count + 1
|
||||
history['playlist_counts'][count_key] = new_count
|
||||
@ -611,7 +745,7 @@ def playlist_strategy_highest_accuracy(
|
||||
song_hash = entry['hash']
|
||||
|
||||
# Check history to avoid reusing any map, regardless of difficulty
|
||||
if song_hash in history['highest_accuracy']:
|
||||
if song_hash in history['scoresaver']:
|
||||
logging.debug(f"Skipping song {song_hash} as it's in history.")
|
||||
continue
|
||||
|
||||
@ -626,7 +760,7 @@ def playlist_strategy_highest_accuracy(
|
||||
logging.info(f"Song added: {entry['map_name']} ({difficulty}) - Average Accuracy: {entry['average_accuracy'] * 100:.2f}%")
|
||||
|
||||
# Update history (now we're just adding the song hash, not the difficulty)
|
||||
history['highest_accuracy'][song_hash] = True
|
||||
history['scoresaver'][song_hash] = True
|
||||
|
||||
# Log if no songs were added
|
||||
if not playlist_data:
|
||||
@ -636,7 +770,7 @@ def playlist_strategy_highest_accuracy(
|
||||
|
||||
save_history(history)
|
||||
|
||||
return playlist_data, f"highest_accuracy-{year}-{month:02d}-{new_count:02d}"
|
||||
return playlist_data, f"scoresaver-{year}-{month:02d}-{new_count:02d}"
|
||||
|
||||
def reset_history(strategy: str) -> None:
|
||||
"""
|
||||
@ -657,7 +791,15 @@ def reset_history(strategy: str) -> None:
|
||||
def get_strategy():
|
||||
parser = argparse.ArgumentParser(description="Generate Beat Saber playlists")
|
||||
parser.add_argument("-s", "--strategy",
|
||||
choices=["scoresaber_oldscores", "beatleader_oldscores", "highest_accuracy", "beatleader_lowest_pp", "scoresaber_lowest_pp"],
|
||||
choices=[
|
||||
"scoresaber_oldscores",
|
||||
"beatleader_oldscores",
|
||||
"scoresaver_acc",
|
||||
# "beatleader_lowest_pp",
|
||||
# "scoresaber_lowest_pp",
|
||||
# "beatleader_lowest_acc",
|
||||
"beatleader_accuracy_gaps"
|
||||
],
|
||||
help="Specify the playlist generation strategy")
|
||||
parser.add_argument("-r", "--reset",
|
||||
action="store_true",
|
||||
@ -680,24 +822,113 @@ def get_strategy():
|
||||
|
||||
return args.strategy
|
||||
|
||||
def playlist_strategy_beatleader_lowest_acc(
|
||||
api: BeatLeaderAPI,
|
||||
song_count: int = 20
|
||||
) -> List[Dict[str, Any]]:
|
||||
player_id = prompt_for_player_id()
|
||||
history = load_history()
|
||||
history.setdefault('beatleader_lowest_acc', {})
|
||||
history.setdefault('playlist_counts', {})
|
||||
"""Selects songs with the lowest accuracy, avoiding reusing the same song+difficulty."""
|
||||
|
||||
# Get the current count and increment it
|
||||
count_key = 'beatleader_lowest_acc'
|
||||
current_count = history['playlist_counts'].get(count_key, 0)
|
||||
new_count = current_count + 1
|
||||
history['playlist_counts'][count_key] = new_count
|
||||
|
||||
scores_data = api.get_player_scores(player_id)
|
||||
all_scores = scores_data.get('playerScores', [])
|
||||
if not all_scores:
|
||||
logging.warning(f"No scores found for player ID {player_id} on BeatLeader.")
|
||||
return [], ""
|
||||
logging.debug(f"Found {len(all_scores)} scores for player ID {player_id} on BeatLeader.")
|
||||
|
||||
# Sort by accuracy in ascending order (lowest first)
|
||||
all_scores.sort(key=lambda x: x.get('score', {}).get('accuracy', float('inf')))
|
||||
|
||||
playlist_data = []
|
||||
for score_entry in all_scores:
|
||||
if len(playlist_data) >= song_count:
|
||||
break
|
||||
|
||||
score = score_entry.get('score', {})
|
||||
leaderboard = score_entry.get('leaderboard', {})
|
||||
|
||||
song_hash = leaderboard.get('songHash')
|
||||
difficulty_raw = int(leaderboard.get('difficulty', ''))
|
||||
game_mode = leaderboard.get('modeName', 'Standard')
|
||||
accuracy = score.get('accuracy', 0)
|
||||
|
||||
if not song_hash or not difficulty_raw:
|
||||
logging.debug(f"Skipping score due to missing song_hash or difficulty_raw: {score_entry}")
|
||||
continue
|
||||
|
||||
difficulty = normalize_difficulty_name(difficulty_raw)
|
||||
|
||||
# avoid reusing song+difficulty
|
||||
if song_hash in history['beatleader_lowest_acc'] and difficulty in history['beatleader_lowest_acc'][song_hash]:
|
||||
logging.debug(f"Skipping song {song_hash} with difficulty {difficulty} as it's in history.")
|
||||
continue
|
||||
|
||||
song_dict = {
|
||||
'hash': song_hash,
|
||||
'difficulties': [
|
||||
{
|
||||
'name': difficulty,
|
||||
'characteristic': game_mode
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
playlist_data.append(song_dict)
|
||||
logging.debug(f"Selected song for playlist: Hash={song_hash}, Difficulty={difficulty}, Accuracy={accuracy*100:.2f}%")
|
||||
|
||||
# Update history
|
||||
history['beatleader_lowest_acc'].setdefault(song_hash, []).append(difficulty)
|
||||
|
||||
if not playlist_data:
|
||||
logging.info("No new songs found to add to the playlist based on history for BeatLeader lowest accuracy.")
|
||||
else:
|
||||
for song in playlist_data:
|
||||
song_hash = song['hash']
|
||||
difficulty = song['difficulties'][0]['name']
|
||||
logging.info(f"Song added: Hash={song_hash}, Difficulty={difficulty}")
|
||||
logging.info(f"Total songs added to playlist from BeatLeader lowest accuracy: {len(playlist_data)}")
|
||||
|
||||
save_history(history)
|
||||
|
||||
return playlist_data, f"beatleader_lowest_acc-{new_count:02d}"
|
||||
|
||||
def saberlist() -> None:
|
||||
"""
|
||||
Generate a playlist of songs from a range of difficulties, all with scores previously set a long time ago.
|
||||
The range of difficulties ensures that the first few songs are good for warming up.
|
||||
Generate a playlist of songs using a specified strategy.
|
||||
Avoids reusing the same song+difficulty in a playlist based on history.
|
||||
"""
|
||||
strategy = get_strategy()
|
||||
|
||||
if strategy == 'scoresaber_oldscores':
|
||||
playlist_data, playlist_title = playlist_strategy_scoresaber_oldscores(ScoreSaberAPI(cache_expiry_days=CACHE_EXPIRY_DAYS))
|
||||
playlist_builder = PlaylistBuilder()
|
||||
elif strategy == 'beatleader_oldscores':
|
||||
playlist_data, playlist_title = playlist_strategy_beatleader_oldscores(BeatLeaderAPI(cache_expiry_days=CACHE_EXPIRY_DAYS))
|
||||
elif strategy == 'highest_accuracy':
|
||||
playlist_data, playlist_title = playlist_strategy_highest_accuracy()
|
||||
playlist_builder = PlaylistBuilder()
|
||||
elif strategy == 'scoresaver_acc':
|
||||
playlist_data, playlist_title = playlist_strategy_scoresaver_acc()
|
||||
playlist_builder = PlaylistBuilder(covers_dir='./covers/scoresavers')
|
||||
elif strategy == 'beatleader_lowest_pp':
|
||||
playlist_data, playlist_title = playlist_strategy_beatleader_lowest_pp(BeatLeaderAPI(cache_expiry_days=CACHE_EXPIRY_DAYS))
|
||||
playlist_builder = PlaylistBuilder(covers_dir='./covers/beatleader')
|
||||
elif strategy == 'scoresaber_lowest_pp':
|
||||
playlist_data, playlist_title = playlist_strategy_scoresaber_lowest_pp(ScoreSaberAPI(cache_expiry_days=CACHE_EXPIRY_DAYS))
|
||||
playlist_builder = PlaylistBuilder(covers_dir='./covers/scoresaber')
|
||||
elif strategy == 'beatleader_lowest_acc':
|
||||
playlist_data, playlist_title = playlist_strategy_beatleader_lowest_acc(BeatLeaderAPI(cache_expiry_days=CACHE_EXPIRY_DAYS))
|
||||
playlist_builder = PlaylistBuilder(covers_dir='./covers/kaiju')
|
||||
elif strategy == 'beatleader_accuracy_gaps':
|
||||
playlist_data, playlist_title = playlist_strategy_beatleader_accuracy_gaps(SimpleBeatLeaderAPI(cache_expiry_days=CACHE_EXPIRY_DAYS))
|
||||
playlist_builder = PlaylistBuilder(covers_dir='./covers/pajamas')
|
||||
else:
|
||||
logging.error(f"Unknown strategy '{strategy}'")
|
||||
return
|
||||
@ -706,7 +937,7 @@ def saberlist() -> None:
|
||||
logging.info("No new scores found to add to the playlist.")
|
||||
return
|
||||
|
||||
PlaylistBuilder().create_playlist(
|
||||
playlist_builder.create_playlist(
|
||||
playlist_data,
|
||||
playlist_title=playlist_title,
|
||||
playlist_author="SaberList Tool"
|
||||
|
Loading…
Reference in New Issue
Block a user