diff --git a/docs/ClientWrapperUsage.md b/docs/ClientWrapperUsage.md index b49b1d6..ed21fa4 100644 --- a/docs/ClientWrapperUsage.md +++ b/docs/ClientWrapperUsage.md @@ -32,3 +32,15 @@ from helpers.BeatSaverAPI import BeatSaverAPI beatsaver_api = BeatSaverAPI() map_data = beatsaver_api.get_maps(year=2024, month=9) ``` + +## SimpleBeatLeaderAPI + +```python +from helpers.SimpleBeatLeaderAPI import SimpleBeatLeaderAPI +player_id = "76561199407393962" +beatleader_api = SimpleBeatLeaderAPI() +data = beatleader_api.get_player_accgraph(player_id) +data[0] +filtered_data = [{'acc': item['acc'], 'stars': item['stars'], 'hash': item['hash']} for item in data] +filtered_data[0] +``` diff --git a/src/helpers/SimpleBeatLeaderAPI.py b/src/helpers/SimpleBeatLeaderAPI.py index 49770cc..75c75f0 100644 --- a/src/helpers/SimpleBeatLeaderAPI.py +++ b/src/helpers/SimpleBeatLeaderAPI.py @@ -176,4 +176,46 @@ class SimpleBeatLeaderAPI: return leaderboard_data.get('data', []) except requests.exceptions.RequestException as e: logging.error(f"Error fetching leaderboard for hash {hash}, diff {diff}, mode {mode}: {e}") + return None + + def get_player_accgraph(self, player_id, use_cache=True, context="general", include_unranked=False, type="acc"): + """ + Retrieve graph data for a specific player. + + :param player_id: ID of the player + :param use_cache: Whether to use cached data if available (default: True) + :param context: Leaderboard context, eg. nopause, nomods, golf, scpm (default: "general") + :param include_unranked: Whether to include unranked maps (default: False) + :param type: Type of graph data to retrieve: 'acc', 'graph', or 'rank' (default: "acc") + :return: List containing graph data points + """ + cache_file = os.path.join(self.CACHE_DIR, f"player_{player_id}_{type}graph_{context}.json") + + if use_cache and self._is_cache_valid(cache_file): + logging.debug(f"Using cached {type} graph data for player {player_id}") + with open(cache_file, 'r') as f: + return json.load(f) + + logging.debug(f"Fetching fresh {type} graph data for player {player_id}") + url = f"{self.BASE_URL}/player/{player_id}/accgraph" + + params = { + "leaderboardContext": context, + "type": type, + "no_unranked_stars": not include_unranked + } + + try: + response = self.session.get(url, params=params) + response.raise_for_status() + graph_data = response.json() + + # Cache the results + with open(cache_file, 'w') as f: + json.dump(graph_data, f) + + sleep(1) + return graph_data + except requests.exceptions.RequestException as e: + logging.error(f"Error fetching acc graph for player {player_id}: {e}") return None \ No newline at end of file diff --git a/src/saberlist/make.py b/src/saberlist/make.py index 4954255..9e37f69 100644 --- a/src/saberlist/make.py +++ b/src/saberlist/make.py @@ -1,14 +1,15 @@ +from collections import defaultdict from datetime import datetime, timedelta, timezone from helpers.BeatSaverAPI import BeatSaverAPI from helpers.SimpleBeatLeaderAPI import SimpleBeatLeaderAPI -from statistics import mean +from statistics import mean, median from typing import Dict, Any, List import argparse import json import logging import os import sys - +import math from dotenv import load_dotenv load_dotenv() LOG_LEVEL = os.environ.get('LOG_LEVEL', 'INFO').upper() @@ -39,7 +40,7 @@ def load_history() -> Dict[str, Any]: history = json.load(f) history.setdefault('playlist_counts', {}) return history - return {'highest_accuracy': {}, 'playlist_counts': {}} + return {'scoresaver': {}, 'playlist_counts': {}} def save_history(history: Dict[str, Any]) -> None: """ @@ -114,6 +115,140 @@ def infer_beatleader_leaderboard_id(song_id: str, difficulty: str) -> str: return f"{song_id}{difficulty_map[difficulty]}1" """ + +def playlist_strategy_beatleader_accuracy_gaps( + api: SimpleBeatLeaderAPI, + song_count: int = 40, + bin_size: float = 0.25, + bin_sort: bool = False +) -> List[Dict[str, Any]]: + """ + Build a playlist of songs where the player's accuracy is furthest below the median accuracy + for their star rating range. Songs are grouped into bins by star rating to ensure fair comparison. + + :param api: SimpleBeatLeaderAPI instance for making API calls + :param song_count: Number of songs to include in the playlist + :param bin_size: Size of star rating bins for grouping similar difficulty songs + :param bin_sort: Whether to sort the bins by star rating + :return: A tuple containing (list of song dictionaries, playlist title string) + """ + player_id = prompt_for_player_id() + history = load_history() + history.setdefault('beatleader_accuracy_gaps', {}) + history.setdefault('playlist_counts', {}) + + # Get the current count and increment it + count_key = 'beatleader_accuracy_gaps' + current_count = history['playlist_counts'].get(count_key, 0) + new_count = current_count + 1 + history['playlist_counts'][count_key] = new_count + + # Fetch accuracy graph data + all_scores = api.get_player_accgraph(player_id) + if not all_scores: + logging.warning(f"No accgraph data found for player ID {player_id} on BeatLeader.") + return [], "" + logging.debug(f"Found {len(all_scores)} accgraph entries for player ID {player_id} on BeatLeader.") + + # Collect all star ratings + star_ratings = [entry['stars'] for entry in all_scores if entry.get('stars') is not None] + if not star_ratings: + logging.warning("No star ratings found in accgraph data.") + return [], "" + min_stars = min(star_ratings) + max_stars = max(star_ratings) + star_range = max_stars - min_stars + + # Remove the bin size calculation logic + num_bins = math.ceil(star_range / bin_size) + logging.info(f"Using bin size: {bin_size}, resulting in {num_bins} bins.") + + # Group accuracies by bins + bin_to_accuracies = defaultdict(list) + for entry in all_scores: + stars = entry.get('stars') + acc = entry.get('acc') + if stars is not None and acc is not None: + bin_index = int((stars - min_stars) / bin_size) + bin_to_accuracies[bin_index].append(acc) + + # Calculate median accuracy for each bin + bin_to_median = {} + for bin_index, accs in bin_to_accuracies.items(): + bin_to_median[bin_index] = median(accs) + bin_start = min_stars + bin_index * bin_size + bin_end = bin_start + bin_size + logging.debug(f"Median accuracy for bin {bin_index} (stars {bin_start:.2f} to {bin_end:.2f}): {bin_to_median[bin_index]:.4f}") + + # Compute difference from median for each score + for entry in all_scores: + stars = entry.get('stars') + acc = entry.get('acc') + if stars is not None and acc is not None: + bin_index = int((stars - min_stars) / bin_size) + median_acc = bin_to_median.get(bin_index) + if median_acc is not None: + entry['diff_from_median'] = acc - median_acc + else: + entry['diff_from_median'] = float('inf') # Place entries with missing data at the end + else: + entry['diff_from_median'] = float('inf') # Place entries with missing data at the end + + # Sort scores by difference from median (ascending: most below median first) + all_scores.sort(key=lambda x: x.get('diff_from_median', float('inf'))) + + playlist_data = [] + for score_entry in all_scores: + if len(playlist_data) >= song_count: + break + + acc = score_entry.get('acc', 0) + stars = score_entry.get('stars') + song_hash = score_entry.get('hash') + + if not song_hash or stars is None: + logging.debug(f"Skipping entry due to missing hash or stars: {score_entry}") + continue + + # Use stars as a proxy for difficulty; adjust if you have actual difficulty levels + difficulty = score_entry.get('diff', '') + difficulty_characteristic = score_entry.get('mode', 'Standard') + + if song_hash in history['beatleader_accuracy_gaps'] and difficulty in history['beatleader_accuracy_gaps'][song_hash]: + logging.debug(f"Skipping song {song_hash} with difficulty {difficulty} as it's in history.") + continue + + song_dict = { + 'hash': song_hash, + 'difficulties': [ + { + 'name': difficulty, + 'characteristic': difficulty_characteristic + } + ] + } + + playlist_data.append(song_dict) + logging.debug(f"Selected song for playlist: Hash={song_hash}, Difficulty={difficulty}, " + f"Accuracy={acc*100:.2f}%, Diff from Median={score_entry['diff_from_median']*100:.2f}%") + + # Update history + history['beatleader_accuracy_gaps'].setdefault(song_hash, []).append(difficulty) + + if not playlist_data: + logging.info("No new songs found to add to the playlist based on history for BeatLeader accuracy gaps.") + else: + for song in playlist_data: + song_hash = song['hash'] + difficulty = song['difficulties'][0]['name'] + logging.info(f"Song added: Hash={song_hash}, Difficulty={difficulty}") + logging.info(f"Total songs added to playlist from BeatLeader accuracy gaps: {len(playlist_data)}") + + save_history(history) + playlist_title = f"accgraph-{new_count:02d}" + + return playlist_data, playlist_title + def playlist_strategy_scoresaber_oldscores( api: ScoreSaberAPI, song_count: int = 20 @@ -548,7 +683,7 @@ def map_leaders_by_month(month: int = 9, year: int = 2024, game_modes: List[str] logging.info(f"Collected leaderboards for {len(collected_data)} map+difficulty combinations, orderable by average accuracy of top ten plays for {month}/{year}.") return collected_data -def playlist_strategy_highest_accuracy( +def playlist_strategy_scoresaver_acc( song_count: int = 40 ) -> List[Dict[str, Any]]: """ @@ -560,7 +695,7 @@ def playlist_strategy_highest_accuracy( :return: A list of dictionaries containing song information for the playlist. """ history = load_history() - history.setdefault('highest_accuracy', {}) + history.setdefault('scoresaver', {}) history.setdefault('playlist_counts', {}) # Get last month's date @@ -585,7 +720,7 @@ def playlist_strategy_highest_accuracy( print("Invalid input. Please enter numbers only.") # Get the current count for highest accuracy and increment it - count_key = f"highest_accuracy-{year}-{month:02d}" + count_key = f"scoresaver-{year}-{month:02d}" current_count = history['playlist_counts'].get(count_key, 0) new_count = current_count + 1 history['playlist_counts'][count_key] = new_count @@ -611,7 +746,7 @@ def playlist_strategy_highest_accuracy( song_hash = entry['hash'] # Check history to avoid reusing any map, regardless of difficulty - if song_hash in history['highest_accuracy']: + if song_hash in history['scoresaver']: logging.debug(f"Skipping song {song_hash} as it's in history.") continue @@ -626,7 +761,7 @@ def playlist_strategy_highest_accuracy( logging.info(f"Song added: {entry['map_name']} ({difficulty}) - Average Accuracy: {entry['average_accuracy'] * 100:.2f}%") # Update history (now we're just adding the song hash, not the difficulty) - history['highest_accuracy'][song_hash] = True + history['scoresaver'][song_hash] = True # Log if no songs were added if not playlist_data: @@ -636,7 +771,7 @@ def playlist_strategy_highest_accuracy( save_history(history) - return playlist_data, f"highest_accuracy-{year}-{month:02d}-{new_count:02d}" + return playlist_data, f"scoresaver-{year}-{month:02d}-{new_count:02d}" def reset_history(strategy: str) -> None: """ @@ -657,7 +792,15 @@ def reset_history(strategy: str) -> None: def get_strategy(): parser = argparse.ArgumentParser(description="Generate Beat Saber playlists") parser.add_argument("-s", "--strategy", - choices=["scoresaber_oldscores", "beatleader_oldscores", "highest_accuracy", "beatleader_lowest_pp", "scoresaber_lowest_pp"], + choices=[ + "scoresaber_oldscores", + "beatleader_oldscores", + "scoresaver_acc", + # "beatleader_lowest_pp", + # "scoresaber_lowest_pp", + # "beatleader_lowest_acc", + "beatleader_accuracy_gaps" + ], help="Specify the playlist generation strategy") parser.add_argument("-r", "--reset", action="store_true", @@ -680,24 +823,113 @@ def get_strategy(): return args.strategy +def playlist_strategy_beatleader_lowest_acc( + api: BeatLeaderAPI, + song_count: int = 20 +) -> List[Dict[str, Any]]: + player_id = prompt_for_player_id() + history = load_history() + history.setdefault('beatleader_lowest_acc', {}) + history.setdefault('playlist_counts', {}) + """Selects songs with the lowest accuracy, avoiding reusing the same song+difficulty.""" + + # Get the current count and increment it + count_key = 'beatleader_lowest_acc' + current_count = history['playlist_counts'].get(count_key, 0) + new_count = current_count + 1 + history['playlist_counts'][count_key] = new_count + + scores_data = api.get_player_scores(player_id) + all_scores = scores_data.get('playerScores', []) + if not all_scores: + logging.warning(f"No scores found for player ID {player_id} on BeatLeader.") + return [], "" + logging.debug(f"Found {len(all_scores)} scores for player ID {player_id} on BeatLeader.") + + # Sort by accuracy in ascending order (lowest first) + all_scores.sort(key=lambda x: x.get('score', {}).get('accuracy', float('inf'))) + + playlist_data = [] + for score_entry in all_scores: + if len(playlist_data) >= song_count: + break + + score = score_entry.get('score', {}) + leaderboard = score_entry.get('leaderboard', {}) + + song_hash = leaderboard.get('songHash') + difficulty_raw = int(leaderboard.get('difficulty', '')) + game_mode = leaderboard.get('modeName', 'Standard') + accuracy = score.get('accuracy', 0) + + if not song_hash or not difficulty_raw: + logging.debug(f"Skipping score due to missing song_hash or difficulty_raw: {score_entry}") + continue + + difficulty = normalize_difficulty_name(difficulty_raw) + + # avoid reusing song+difficulty + if song_hash in history['beatleader_lowest_acc'] and difficulty in history['beatleader_lowest_acc'][song_hash]: + logging.debug(f"Skipping song {song_hash} with difficulty {difficulty} as it's in history.") + continue + + song_dict = { + 'hash': song_hash, + 'difficulties': [ + { + 'name': difficulty, + 'characteristic': game_mode + } + ] + } + + playlist_data.append(song_dict) + logging.debug(f"Selected song for playlist: Hash={song_hash}, Difficulty={difficulty}, Accuracy={accuracy*100:.2f}%") + + # Update history + history['beatleader_lowest_acc'].setdefault(song_hash, []).append(difficulty) + + if not playlist_data: + logging.info("No new songs found to add to the playlist based on history for BeatLeader lowest accuracy.") + else: + for song in playlist_data: + song_hash = song['hash'] + difficulty = song['difficulties'][0]['name'] + logging.info(f"Song added: Hash={song_hash}, Difficulty={difficulty}") + logging.info(f"Total songs added to playlist from BeatLeader lowest accuracy: {len(playlist_data)}") + + save_history(history) + + return playlist_data, f"beatleader_lowest_acc-{new_count:02d}" + def saberlist() -> None: """ - Generate a playlist of songs from a range of difficulties, all with scores previously set a long time ago. - The range of difficulties ensures that the first few songs are good for warming up. + Generate a playlist of songs using a specified strategy. Avoids reusing the same song+difficulty in a playlist based on history. """ strategy = get_strategy() if strategy == 'scoresaber_oldscores': playlist_data, playlist_title = playlist_strategy_scoresaber_oldscores(ScoreSaberAPI(cache_expiry_days=CACHE_EXPIRY_DAYS)) + playlist_builder = PlaylistBuilder() elif strategy == 'beatleader_oldscores': playlist_data, playlist_title = playlist_strategy_beatleader_oldscores(BeatLeaderAPI(cache_expiry_days=CACHE_EXPIRY_DAYS)) - elif strategy == 'highest_accuracy': - playlist_data, playlist_title = playlist_strategy_highest_accuracy() + playlist_builder = PlaylistBuilder() + elif strategy == 'scoresaver_acc': + playlist_data, playlist_title = playlist_strategy_scoresaver_acc() + playlist_builder = PlaylistBuilder(covers_dir='./covers/scoresavers') elif strategy == 'beatleader_lowest_pp': playlist_data, playlist_title = playlist_strategy_beatleader_lowest_pp(BeatLeaderAPI(cache_expiry_days=CACHE_EXPIRY_DAYS)) + playlist_builder = PlaylistBuilder(covers_dir='./covers/beatleader') elif strategy == 'scoresaber_lowest_pp': playlist_data, playlist_title = playlist_strategy_scoresaber_lowest_pp(ScoreSaberAPI(cache_expiry_days=CACHE_EXPIRY_DAYS)) + playlist_builder = PlaylistBuilder(covers_dir='./covers/scoresaber') + elif strategy == 'beatleader_lowest_acc': + playlist_data, playlist_title = playlist_strategy_beatleader_lowest_acc(BeatLeaderAPI(cache_expiry_days=CACHE_EXPIRY_DAYS)) + playlist_builder = PlaylistBuilder(covers_dir='./covers/kaiju') + elif strategy == 'beatleader_accuracy_gaps': + playlist_data, playlist_title = playlist_strategy_beatleader_accuracy_gaps(SimpleBeatLeaderAPI(cache_expiry_days=CACHE_EXPIRY_DAYS)) + playlist_builder = PlaylistBuilder(covers_dir='./covers/pajamas') else: logging.error(f"Unknown strategy '{strategy}'") return @@ -706,7 +938,7 @@ def saberlist() -> None: logging.info("No new scores found to add to the playlist.") return - PlaylistBuilder().create_playlist( + playlist_builder.create_playlist( playlist_data, playlist_title=playlist_title, playlist_author="SaberList Tool"