Add accuracy curve (accgraph) strategy for Scoresaber
This commit is contained in:
parent
a30c4467bc
commit
a099898e4e
@ -44,3 +44,39 @@ data[0]
|
||||
filtered_data = [{'acc': item['acc'], 'stars': item['stars'], 'hash': item['hash']} for item in data]
|
||||
filtered_data[0]
|
||||
```
|
||||
|
||||
## SimpleBeatSaverAPI
|
||||
|
||||
```python
|
||||
from helpers.SimpleBeatSaverAPI import SimpleBeatSaverAPI
|
||||
beat_saver_api = SimpleBeatSaverAPI()
|
||||
|
||||
curated_songs = beat_saver_api.get_curated_songs(use_cache=False)
|
||||
mapper_maps = beat_saver_api.get_mapper_maps(mapper_id=4285738, use_cache=False)
|
||||
```
|
||||
|
||||
## ScoreSaberAPI
|
||||
|
||||
```python
|
||||
from helpers.ScoreSaberAPI import ScoreSaberAPI
|
||||
from clients.scoresaber.models.get_api_player_player_id_scores_sort import GetApiPlayerPlayerIdScoresSort
|
||||
|
||||
# Instantiate the API client
|
||||
scoresaber_api = ScoreSaberAPI()
|
||||
|
||||
# Specify the player ID you want to fetch scores for
|
||||
player_id = "76561199407393962"
|
||||
|
||||
# Fetch player scores
|
||||
scores_data = scoresaber_api.get_player_scores(
|
||||
player_id=player_id,
|
||||
use_cache=True, # Use cached data if available
|
||||
limit=100, # Number of scores per page
|
||||
sort=GetApiPlayerPlayerIdScoresSort.RECENT, # Sort by most recent scores
|
||||
max_pages=2 # Maximum number of pages to fetch
|
||||
)
|
||||
ranked_scores = [score for score in scores_data.get('playerScores') if score['leaderboard']['stars'] != 0]
|
||||
|
||||
print(f"Got {len(scores_data.get('playerScores'))} scores for player {player_id}")
|
||||
print(f"Got {len(ranked_scores)} ranked scores for player {player_id}")
|
||||
```
|
||||
|
7
docs/Strategies.md
Normal file
7
docs/Strategies.md
Normal file
@ -0,0 +1,7 @@
|
||||
# Playlist Strategies
|
||||
|
||||
## Accuracy Gaps
|
||||
|
||||
Prioritizes songs that are furthest below the median accuracy for the player.
|
||||
|
||||
![Accuracy Gaps](images/accuracy-gaps.png)
|
BIN
docs/images/accuracy-gaps.png
Normal file
BIN
docs/images/accuracy-gaps.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 117 KiB |
@ -22,7 +22,7 @@ from helpers.SimpleBeatSaverAPI import SimpleBeatSaverAPI
|
||||
|
||||
from saberlist.utils import reset_history
|
||||
from saberlist.playlist_strategies.oldscores import playlist_strategy_beatleader_oldscores, playlist_strategy_scoresaber_oldscores
|
||||
from saberlist.playlist_strategies.accuracy import playlist_strategy_beatleader_lowest_acc, playlist_strategy_beatleader_accuracy_gaps
|
||||
from saberlist.playlist_strategies.accuracy import playlist_strategy_beatleader_lowest_acc, playlist_strategy_beatleader_accuracy_gaps, playlist_strategy_scoresaber_accuracy_gaps
|
||||
from saberlist.playlist_strategies.performance import playlist_strategy_beatleader_lowest_pp, playlist_strategy_scoresaber_lowest_pp
|
||||
from saberlist.playlist_strategies.beatsaver import playlist_strategy_beatsaver_acc, playlist_strategy_beatsaver_curated, playlist_strategy_beatsaver_mappers
|
||||
|
||||
@ -54,6 +54,9 @@ def saberlist() -> None:
|
||||
elif strategy == 'beatleader_accuracy_gaps':
|
||||
playlist_data, playlist_title = playlist_strategy_beatleader_accuracy_gaps(SimpleBeatLeaderAPI(cache_expiry_days=CACHE_EXPIRY_DAYS))
|
||||
playlist_builder = PlaylistBuilder(covers_dir='./covers/pajamas')
|
||||
elif strategy == 'scoresaber_accuracy_gaps':
|
||||
playlist_data, playlist_title = playlist_strategy_scoresaber_accuracy_gaps(ScoreSaberAPI(cache_expiry_days=CACHE_EXPIRY_DAYS))
|
||||
playlist_builder = PlaylistBuilder(covers_dir='./covers/scoresaber')
|
||||
elif strategy == 'beatsaver_curated':
|
||||
playlist_data, playlist_title = playlist_strategy_beatsaver_curated(SimpleBeatSaverAPI())
|
||||
playlist_builder = PlaylistBuilder(covers_dir='./covers/curated')
|
||||
@ -80,11 +83,12 @@ def get_strategy():
|
||||
choices=[
|
||||
"scoresaber_oldscores",
|
||||
"beatleader_oldscores",
|
||||
"beatsaver_acc",
|
||||
# "beatsaver_acc",
|
||||
# "beatleader_lowest_pp",
|
||||
# "scoresaber_lowest_pp",
|
||||
# "beatleader_lowest_acc",
|
||||
"beatleader_accuracy_gaps",
|
||||
"scoresaber_accuracy_gaps",
|
||||
"beatsaver_curated",
|
||||
"beatsaver_mappers"
|
||||
],
|
||||
|
@ -16,9 +16,170 @@ logging.basicConfig(
|
||||
)
|
||||
|
||||
from helpers.SimpleBeatLeaderAPI import SimpleBeatLeaderAPI
|
||||
from helpers.BeatLeaderAPI import BeatLeaderAPI
|
||||
|
||||
from saberlist.utils import prompt_for_player_id, load_history, save_history, normalize_difficulty_name
|
||||
|
||||
|
||||
from helpers.ScoreSaberAPI import ScoreSaberAPI
|
||||
from clients.scoresaber.models.get_api_player_player_id_scores_sort import GetApiPlayerPlayerIdScoresSort
|
||||
|
||||
"""Testing
|
||||
api = ScoreSaberAPI()
|
||||
song_count = 40
|
||||
bin_size = 0.25
|
||||
bin_sort = False
|
||||
"""
|
||||
def playlist_strategy_scoresaber_accuracy_gaps(
|
||||
api: ScoreSaberAPI,
|
||||
song_count: int = 40,
|
||||
bin_size: float = 0.25,
|
||||
bin_sort: bool = False
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Build a playlist of songs where the player's accuracy is furthest below the median accuracy
|
||||
for their star rating range. Songs are grouped into bins by star rating to ensure fair comparison.
|
||||
|
||||
:param api: ScoreSaberAPI instance for making API calls
|
||||
:param song_count: Number of songs to include in the playlist
|
||||
:param bin_size: Size of star rating bins for grouping similar difficulty songs
|
||||
:param bin_sort: Whether to sort the bins by star rating
|
||||
:return: A tuple containing (list of song dictionaries, playlist title string)
|
||||
"""
|
||||
player_id = prompt_for_player_id()
|
||||
history = load_history()
|
||||
history.setdefault('scoresaber_accuracy_gaps', {})
|
||||
history.setdefault('playlist_counts', {})
|
||||
|
||||
# Get the current count and increment it
|
||||
count_key = 'scoresaber_accuracy_gaps'
|
||||
current_count = history['playlist_counts'].get(count_key, 0)
|
||||
new_count = current_count + 1
|
||||
history['playlist_counts'][count_key] = new_count
|
||||
|
||||
# Fetch player scores
|
||||
scores_data = api.get_player_scores(
|
||||
player_id=player_id,
|
||||
use_cache=True,
|
||||
limit=100, # per page
|
||||
sort=GetApiPlayerPlayerIdScoresSort.RECENT
|
||||
)
|
||||
ranked_scores = [score for score in scores_data.get('playerScores', [])
|
||||
if score.get('leaderboard', {}).get('stars', 0) != 0]
|
||||
|
||||
if not ranked_scores:
|
||||
logging.warning(f"No ranked scores found for player ID {player_id} on ScoreSaber.")
|
||||
return [], ""
|
||||
logging.debug(f"Found {len(ranked_scores)} ranked scores for player ID {player_id} on ScoreSaber.")
|
||||
|
||||
# Get min and max star ratings
|
||||
min_stars = min(score['leaderboard']['stars'] for score in ranked_scores)
|
||||
max_stars = max(score['leaderboard']['stars'] for score in ranked_scores)
|
||||
star_range = max_stars - min_stars
|
||||
|
||||
# Determine number of bins
|
||||
num_bins = math.ceil(star_range / bin_size)
|
||||
logging.info(f"Using bin size: {bin_size}, resulting in {num_bins} bins.")
|
||||
|
||||
# Group accuracies by bins
|
||||
bin_to_accuracies = defaultdict(list)
|
||||
for score in ranked_scores:
|
||||
# Calculate accuracy
|
||||
try:
|
||||
modified_score = score['score']['modifiedScore']
|
||||
max_score = score['leaderboard']['maxScore']
|
||||
accuracy = modified_score / max_score if max_score else 0
|
||||
score['accuracy'] = accuracy
|
||||
except Exception as e:
|
||||
logging.error(f"Error calculating accuracy for score {score}: {e}")
|
||||
continue
|
||||
|
||||
stars = score['leaderboard'].get('stars')
|
||||
if stars is not None and accuracy is not None:
|
||||
bin_index = int((stars - min_stars) / bin_size)
|
||||
bin_to_accuracies[bin_index].append(accuracy)
|
||||
|
||||
# Calculate median accuracy for each bin
|
||||
bin_to_median = {}
|
||||
for bin_index, accuracies in bin_to_accuracies.items():
|
||||
bin_to_median[bin_index] = median(accuracies)
|
||||
bin_start = min_stars + bin_index * bin_size
|
||||
bin_end = bin_start + bin_size
|
||||
logging.debug(f"Median accuracy for bin {bin_index} (stars {bin_start:.2f} to {bin_end:.2f}): {bin_to_median[bin_index]:.4f}")
|
||||
|
||||
# Compute difference from median for each score
|
||||
for score in ranked_scores:
|
||||
stars = score['leaderboard'].get('stars')
|
||||
accuracy = score.get('accuracy')
|
||||
if stars is not None and accuracy is not None:
|
||||
bin_index = int((stars - min_stars) / bin_size)
|
||||
median_acc = bin_to_median.get(bin_index)
|
||||
if median_acc is not None:
|
||||
score['diff_from_median'] = accuracy - median_acc
|
||||
else:
|
||||
score['diff_from_median'] = float('inf') # Place entries with missing data at the end
|
||||
else:
|
||||
score['diff_from_median'] = float('inf') # Place entries with missing data at the end
|
||||
|
||||
# Sort scores by difference from median (ascending: most below median first)
|
||||
ranked_scores.sort(key=lambda x: x.get('diff_from_median', float('inf')))
|
||||
|
||||
playlist_data = []
|
||||
for score in ranked_scores:
|
||||
if len(playlist_data) >= song_count:
|
||||
break
|
||||
|
||||
accuracy = score['score'].get('accuracy', 0)
|
||||
stars = score['leaderboard'].get('stars')
|
||||
song_hash = score['leaderboard'].get('songHash')
|
||||
|
||||
if not song_hash or stars is None:
|
||||
logging.debug(f"Skipping score due to missing hash or stars: {score}")
|
||||
continue
|
||||
|
||||
difficulty_raw = score['leaderboard']['difficulty'].get('difficultyRaw', '')
|
||||
game_mode = score['leaderboard']['difficulty'].get('gameMode', 'Standard')
|
||||
game_mode = game_mode.replace('Solo', '') # Remove prefix 'Solo' from the game mode
|
||||
difficulty = normalize_difficulty_name(difficulty_raw)
|
||||
|
||||
# Avoid reusing song+difficulty
|
||||
if song_hash in history['scoresaber_accuracy_gaps'] and difficulty in history['scoresaber_accuracy_gaps'][song_hash]:
|
||||
logging.debug(f"Skipping song {song_hash} with difficulty {difficulty} as it's in history.")
|
||||
continue
|
||||
|
||||
song_dict = {
|
||||
'hash': song_hash,
|
||||
'difficulties': [
|
||||
{
|
||||
'name': difficulty,
|
||||
'characteristic': game_mode
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
playlist_data.append(song_dict)
|
||||
song_name = score['leaderboard']['songName']
|
||||
song_artist = score['leaderboard']['songAuthorName']
|
||||
logging.debug(f"Selected song for playlist: Name={song_name}, Artist={song_artist}, "
|
||||
f"Accuracy={accuracy*100:.2f}%, Diff from Median={score['diff_from_median']*100:.2f}%")
|
||||
|
||||
# Update history
|
||||
history['scoresaber_accuracy_gaps'].setdefault(song_hash, []).append(difficulty)
|
||||
|
||||
if not playlist_data:
|
||||
logging.info("No new songs found to add to the playlist based on history for ScoreSaber accuracy gaps.")
|
||||
else:
|
||||
for song in playlist_data:
|
||||
song_hash = song['hash']
|
||||
difficulty = song['difficulties'][0]['name']
|
||||
logging.info(f"Song added: Hash={song_hash}, Difficulty={difficulty}")
|
||||
logging.info(f"Total songs added to playlist from ScoreSaber accuracy gaps: {len(playlist_data)}")
|
||||
|
||||
save_history(history)
|
||||
playlist_title = f"scoresaber_accgraph-{new_count:02d}"
|
||||
|
||||
return playlist_data, playlist_title
|
||||
|
||||
def playlist_strategy_beatleader_accuracy_gaps(
|
||||
api: SimpleBeatLeaderAPI,
|
||||
song_count: int = 40,
|
||||
|
Loading…
x
Reference in New Issue
Block a user