from collections import defaultdict from statistics import median from typing import Dict, Any, List import logging import os import math from dotenv import load_dotenv load_dotenv() LOG_LEVEL = os.environ.get('LOG_LEVEL', 'INFO').upper() import logging logging.basicConfig( format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=LOG_LEVEL ) from helpers.SimpleBeatLeaderAPI import SimpleBeatLeaderAPI from helpers.BeatLeaderAPI import BeatLeaderAPI from saberlist.utils import prompt_for_player_id, load_history, save_history, normalize_difficulty_name from helpers.ScoreSaberAPI import ScoreSaberAPI from clients.scoresaber.models.get_api_player_player_id_scores_sort import GetApiPlayerPlayerIdScoresSort """Testing api = ScoreSaberAPI() song_count = 40 bin_size = 0.25 bin_sort = False """ def playlist_strategy_scoresaber_accuracy_gaps( api: ScoreSaberAPI, song_count: int = 40, bin_size: float = 0.25, bin_sort: bool = False ) -> List[Dict[str, Any]]: """ Build a playlist of songs where the player's accuracy is furthest below the median accuracy for their star rating range. Songs are grouped into bins by star rating to ensure fair comparison. :param api: ScoreSaberAPI instance for making API calls :param song_count: Number of songs to include in the playlist :param bin_size: Size of star rating bins for grouping similar difficulty songs :param bin_sort: Whether to sort the bins by star rating :return: A tuple containing (list of song dictionaries, playlist title string) """ player_id = prompt_for_player_id() history = load_history() history.setdefault('scoresaber_accuracy_gaps', {}) history.setdefault('playlist_counts', {}) # Get the current count and increment it count_key = 'scoresaber_accuracy_gaps' current_count = history['playlist_counts'].get(count_key, 0) new_count = current_count + 1 history['playlist_counts'][count_key] = new_count # Fetch player scores scores_data = api.get_player_scores( player_id=player_id, use_cache=True, limit=100, # per page sort=GetApiPlayerPlayerIdScoresSort.RECENT ) ranked_scores = [score for score in scores_data.get('playerScores', []) if score.get('leaderboard', {}).get('stars', 0) != 0] if not ranked_scores: logging.warning(f"No ranked scores found for player ID {player_id} on ScoreSaber.") return [], "" logging.debug(f"Found {len(ranked_scores)} ranked scores for player ID {player_id} on ScoreSaber.") # Get min and max star ratings min_stars = min(score['leaderboard']['stars'] for score in ranked_scores) max_stars = max(score['leaderboard']['stars'] for score in ranked_scores) star_range = max_stars - min_stars # Determine number of bins num_bins = math.ceil(star_range / bin_size) logging.info(f"Using bin size: {bin_size}, resulting in {num_bins} bins.") # Group accuracies by bins bin_to_accuracies = defaultdict(list) for score in ranked_scores: # Calculate accuracy try: modified_score = score['score']['modifiedScore'] max_score = score['leaderboard']['maxScore'] accuracy = modified_score / max_score if max_score else 0 score['accuracy'] = accuracy except Exception as e: logging.error(f"Error calculating accuracy for score {score}: {e}") continue stars = score['leaderboard'].get('stars') if stars is not None and accuracy is not None: bin_index = int((stars - min_stars) / bin_size) bin_to_accuracies[bin_index].append(accuracy) # Calculate median accuracy for each bin bin_to_median = {} for bin_index, accuracies in bin_to_accuracies.items(): bin_to_median[bin_index] = median(accuracies) bin_start = min_stars + bin_index * bin_size bin_end = bin_start + bin_size logging.debug(f"Median accuracy for bin {bin_index} (stars {bin_start:.2f} to {bin_end:.2f}): {bin_to_median[bin_index]:.4f}") # Compute difference from median for each score for score in ranked_scores: stars = score['leaderboard'].get('stars') accuracy = score.get('accuracy') if stars is not None and accuracy is not None: bin_index = int((stars - min_stars) / bin_size) median_acc = bin_to_median.get(bin_index) if median_acc is not None: score['diff_from_median'] = accuracy - median_acc else: score['diff_from_median'] = float('inf') # Place entries with missing data at the end else: score['diff_from_median'] = float('inf') # Place entries with missing data at the end # Sort scores by difference from median (ascending: most below median first) ranked_scores.sort(key=lambda x: x.get('diff_from_median', float('inf'))) playlist_data = [] for score in ranked_scores: if len(playlist_data) >= song_count: break accuracy = score['score'].get('accuracy', 0) stars = score['leaderboard'].get('stars') song_hash = score['leaderboard'].get('songHash') if not song_hash or stars is None: logging.debug(f"Skipping score due to missing hash or stars: {score}") continue difficulty_raw = score['leaderboard']['difficulty'].get('difficultyRaw', '') game_mode = score['leaderboard']['difficulty'].get('gameMode', 'Standard') game_mode = game_mode.replace('Solo', '') # Remove prefix 'Solo' from the game mode difficulty = normalize_difficulty_name(difficulty_raw) # Avoid reusing song+difficulty if song_hash in history['scoresaber_accuracy_gaps'] and difficulty in history['scoresaber_accuracy_gaps'][song_hash]: logging.debug(f"Skipping song {song_hash} with difficulty {difficulty} as it's in history.") continue song_dict = { 'hash': song_hash, 'difficulties': [ { 'name': difficulty, 'characteristic': game_mode } ] } playlist_data.append(song_dict) song_name = score['leaderboard']['songName'] song_artist = score['leaderboard']['songAuthorName'] logging.debug(f"Selected song for playlist: Name={song_name}, Artist={song_artist}, " f"Accuracy={accuracy*100:.2f}%, Diff from Median={score['diff_from_median']*100:.2f}%") # Update history history['scoresaber_accuracy_gaps'].setdefault(song_hash, []).append(difficulty) if not playlist_data: logging.info("No new songs found to add to the playlist based on history for ScoreSaber accuracy gaps.") else: for song in playlist_data: song_hash = song['hash'] difficulty = song['difficulties'][0]['name'] logging.info(f"Song added: Hash={song_hash}, Difficulty={difficulty}") logging.info(f"Total songs added to playlist from ScoreSaber accuracy gaps: {len(playlist_data)}") save_history(history) playlist_title = f"scoresaber_accgraph-{new_count:02d}" return playlist_data, playlist_title def playlist_strategy_beatleader_accuracy_gaps( api: SimpleBeatLeaderAPI, song_count: int = 40, bin_size: float = 0.25, bin_sort: bool = False ) -> List[Dict[str, Any]]: """ Build a playlist of songs where the player's accuracy is furthest below the median accuracy for their star rating range. Songs are grouped into bins by star rating to ensure fair comparison. :param api: SimpleBeatLeaderAPI instance for making API calls :param song_count: Number of songs to include in the playlist :param bin_size: Size of star rating bins for grouping similar difficulty songs :param bin_sort: Whether to sort the bins by star rating :return: A tuple containing (list of song dictionaries, playlist title string) """ player_id = prompt_for_player_id() history = load_history() history.setdefault('beatleader_accuracy_gaps', {}) history.setdefault('playlist_counts', {}) # Get the current count and increment it count_key = 'beatleader_accuracy_gaps' current_count = history['playlist_counts'].get(count_key, 0) new_count = current_count + 1 history['playlist_counts'][count_key] = new_count # Fetch accuracy graph data all_scores = api.get_player_accgraph(player_id) if not all_scores: logging.warning(f"No accgraph data found for player ID {player_id} on BeatLeader.") return [], "" logging.debug(f"Found {len(all_scores)} accgraph entries for player ID {player_id} on BeatLeader.") # Collect all star ratings star_ratings = [entry['stars'] for entry in all_scores if entry.get('stars') is not None] if not star_ratings: logging.warning("No star ratings found in accgraph data.") return [], "" min_stars = min(star_ratings) max_stars = max(star_ratings) star_range = max_stars - min_stars # Remove the bin size calculation logic num_bins = math.ceil(star_range / bin_size) logging.info(f"Using bin size: {bin_size}, resulting in {num_bins} bins.") # Group accuracies by bins bin_to_accuracies = defaultdict(list) for entry in all_scores: stars = entry.get('stars') acc = entry.get('acc') if stars is not None and acc is not None: bin_index = int((stars - min_stars) / bin_size) bin_to_accuracies[bin_index].append(acc) # Calculate median accuracy for each bin bin_to_median = {} for bin_index, accs in bin_to_accuracies.items(): bin_to_median[bin_index] = median(accs) bin_start = min_stars + bin_index * bin_size bin_end = bin_start + bin_size logging.debug(f"Median accuracy for bin {bin_index} (stars {bin_start:.2f} to {bin_end:.2f}): {bin_to_median[bin_index]:.4f}") # Compute difference from median for each score for entry in all_scores: stars = entry.get('stars') acc = entry.get('acc') if stars is not None and acc is not None: bin_index = int((stars - min_stars) / bin_size) median_acc = bin_to_median.get(bin_index) if median_acc is not None: entry['diff_from_median'] = acc - median_acc else: entry['diff_from_median'] = float('inf') # Place entries with missing data at the end else: entry['diff_from_median'] = float('inf') # Place entries with missing data at the end # Sort scores by difference from median (ascending: most below median first) all_scores.sort(key=lambda x: x.get('diff_from_median', float('inf'))) playlist_data = [] for score_entry in all_scores: if len(playlist_data) >= song_count: break acc = score_entry.get('acc', 0) stars = score_entry.get('stars') song_hash = score_entry.get('hash') if not song_hash or stars is None: logging.debug(f"Skipping entry due to missing hash or stars: {score_entry}") continue # Use stars as a proxy for difficulty; adjust if you have actual difficulty levels difficulty = score_entry.get('diff', '') difficulty_characteristic = score_entry.get('mode', 'Standard') if song_hash in history['beatleader_accuracy_gaps'] and difficulty in history['beatleader_accuracy_gaps'][song_hash]: logging.debug(f"Skipping song {song_hash} with difficulty {difficulty} as it's in history.") continue song_dict = { 'hash': song_hash, 'difficulties': [ { 'name': difficulty, 'characteristic': difficulty_characteristic } ] } playlist_data.append(song_dict) logging.debug(f"Selected song for playlist: Hash={song_hash}, Difficulty={difficulty}, " f"Accuracy={acc*100:.2f}%, Diff from Median={score_entry['diff_from_median']*100:.2f}%") # Update history history['beatleader_accuracy_gaps'].setdefault(song_hash, []).append(difficulty) if not playlist_data: logging.info("No new songs found to add to the playlist based on history for BeatLeader accuracy gaps.") else: for song in playlist_data: song_hash = song['hash'] difficulty = song['difficulties'][0]['name'] logging.info(f"Song added: Hash={song_hash}, Difficulty={difficulty}") logging.info(f"Total songs added to playlist from BeatLeader accuracy gaps: {len(playlist_data)}") save_history(history) playlist_title = f"accgraph-{new_count:02d}" return playlist_data, playlist_title def playlist_strategy_beatleader_lowest_acc( api: BeatLeaderAPI, song_count: int = 20 ) -> List[Dict[str, Any]]: player_id = prompt_for_player_id() history = load_history() history.setdefault('beatleader_lowest_acc', {}) history.setdefault('playlist_counts', {}) """Selects songs with the lowest accuracy, avoiding reusing the same song+difficulty.""" # Get the current count and increment it count_key = 'beatleader_lowest_acc' current_count = history['playlist_counts'].get(count_key, 0) new_count = current_count + 1 history['playlist_counts'][count_key] = new_count scores_data = api.get_player_scores(player_id) all_scores = scores_data.get('playerScores', []) if not all_scores: logging.warning(f"No scores found for player ID {player_id} on BeatLeader.") return [], "" logging.debug(f"Found {len(all_scores)} scores for player ID {player_id} on BeatLeader.") # Sort by accuracy in ascending order (lowest first) all_scores.sort(key=lambda x: x.get('score', {}).get('accuracy', float('inf'))) playlist_data = [] for score_entry in all_scores: if len(playlist_data) >= song_count: break score = score_entry.get('score', {}) leaderboard = score_entry.get('leaderboard', {}) song_hash = leaderboard.get('songHash') difficulty_raw = int(leaderboard.get('difficulty', '')) game_mode = leaderboard.get('modeName', 'Standard') accuracy = score.get('accuracy', 0) if not song_hash or not difficulty_raw: logging.debug(f"Skipping score due to missing song_hash or difficulty_raw: {score_entry}") continue difficulty = normalize_difficulty_name(difficulty_raw) # avoid reusing song+difficulty if song_hash in history['beatleader_lowest_acc'] and difficulty in history['beatleader_lowest_acc'][song_hash]: logging.debug(f"Skipping song {song_hash} with difficulty {difficulty} as it's in history.") continue song_dict = { 'hash': song_hash, 'difficulties': [ { 'name': difficulty, 'characteristic': game_mode } ] } playlist_data.append(song_dict) logging.debug(f"Selected song for playlist: Hash={song_hash}, Difficulty={difficulty}, Accuracy={accuracy*100:.2f}%") # Update history history['beatleader_lowest_acc'].setdefault(song_hash, []).append(difficulty) if not playlist_data: logging.info("No new songs found to add to the playlist based on history for BeatLeader lowest accuracy.") else: for song in playlist_data: song_hash = song['hash'] difficulty = song['difficulties'][0]['name'] logging.info(f"Song added: Hash={song_hash}, Difficulty={difficulty}") logging.info(f"Total songs added to playlist from BeatLeader lowest accuracy: {len(playlist_data)}") save_history(history) return playlist_data, f"beatleader_lowest_acc-{new_count:02d}"